skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narum, Shawn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Whole‐genome sequencing data allow survey of variation from across the genome, reducing the constraint of balancing genome sub‐sampling with estimating recombination rates and linkage between sampled markers and target loci. As sequencing costs decrease, low‐coverage whole‐genome sequencing of pooled or indexed‐individual samples is commonly utilized to identify loci associated with phenotypes or environmental axes in non‐model organisms. There are, however, relatively few publicly available bioinformatic pipelines designed explicitly to analyse these types of data, and fewer still that process the raw sequencing data, provide useful metrics of quality control and then execute analyses. Here, we present an updated version of a bioinformatics pipeline calledPoolParty2that can effectively handle either pooled or indexed DNA samples and includes new features to improve computational efficiency. Using simulated data, we demonstrate the ability of our pipeline to recover segregating variants, estimate their allele frequencies accurately, and identify genomic regions harbouring loci under selection. Based on the simulated data set, we benchmark the efficacy of our pipeline with another bioinformatic suite,angsd, and illustrate the compatibility and complementarity of these suites usingangsdto generate genotype likelihoods as input for identifying linkage outlier regions using alignment files and variants provided byPoolParty2. Finally, we apply our updated pipeline to an empirical dataset of low‐coverage whole genomic data from population samples of Columbia River steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic impacts of decades of artificial selection in a prominent hatchery stock. Thus, we not only demonstrate the utility ofPoolParty2for genomic studies that combine sequencing data from multiple individuals, but also illustrate how it compliments other bioinformatics resources such asangsd. 
    more » « less
  2. Abstract Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome–environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)—a species of important economic, social, cultural, and ecological value—in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool‐seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration‐specific and spawning site‐specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites. 
    more » « less
  3. Abstract Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here. 
    more » « less